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F Abstract

We discuss a method for controlling a group of mobile robots in a distributed
manner. The method is fully distributed in the sense that each robot plans its
motion individually based upon a given goal of the group and the observed
positions of other robots. We illustrate the method by showing how a large -

number of robots can form an approximation of a circle, a simple polygon =Z
or a line segment in the plane. We also show how the robots can distribute

themselves nearly uniformly within a circle or a convex polygon in the plane. -N Q
Finally, we show how the robots can be divided into two or more groups. It
turns out that in many cases most robots execute an identical, simple algorithm.
The performance of the method is demonstrated by simulation.

1 Introduction

Development of autonomous mobile robots has been one of the major research efforts
of many institutions, due to their immediate applicability in a wide variety of tasks
such as space missions, operations in hazardous environments, and military opera-
tions. Leading research programs on mobile robots and related topics include (1) The
MIT Mobile Robot Lab [21 [31 [4] [5] [6] [7] [8] [21] [23] [24] [25] [34]; (2) The Shakey
Robot of SRI [30] [311 [32] [331; (3) The Rover Robot of CMU [27] [28] [293; (4) The
TO-Rover Robot of University of Tokyo [39]; (5) Multiple Autonomous Underwater

*A preliminary version of this paper was presented at the 5th IEEE International Symposium
on Intelligent Control, September 1990, Philadelphia, Pennsylvania. This work was supported in
part by the National Science Foundation under grants CCR-9004346 and IRI-9307506, the Office of
Naval Research under grant N00014-94-1-0284, and the Graduate School, University of Wisconsin -
Milwaukee.

tDepartment of Information and Computer Sciences, University of Hawaii at Manoa, 2565 The
Mall, Honolulu, HI 96822, U.S.A. (808) 948-6049

I Department of Electrical Engineering and Computer Science, University of Wisconsin - Milwau-
kee, P.O. Box 784, Milwaukee, WI 53201, U.S.A. (414) 229-5689 Send all correspondence to this
author.

94 `8 '29 21;



Vehicles of National Bureau of Standards [151; and (6) Autonomous Land Vehicle of
DARPA [1] [161 [181.

The main subject of this paper is the problem of controlling multiple mobile robots
in a distributed manner. Controlling a single robot, including navigation and motion
planning, has been one of the central issues of mobile robot research (see, for example,
[9] [101 [14] [19] [22] [26] [27] [35] [43]). Although some investigations on the problem
of controlling multiple mobile robots have been started (see, for example, [111 [12]
[13] [15] [17] [23] [37] [41] [42] [44]), our knowledge on how the motion of many mobile
robots can be coordinated efficiently to achieve a given goal is still limited at present.
As will be explained next, we have identified a class of interesting tasks that requires
explicit cooperation and motion coordination of a large number of mobile robots, for
which a distributed control method can be effective.

Consider the following three problems of coordinating the motion of about 50
mobile robots in the plane.

1. The robots are required to form an approximation of a simple geometric object,
such as a circle, a simple polygon or a line segment, in order to build a barricade
or to surround a given object. The size of the geometric object to be formed
may be given, but its exact final location is not very important.

2. The robots are required to distribute themselves nearly uniformly within an
area of a particular shape, such as a circle or a convex polygon, in order to
protect the area from possible attacks.

3. The robots must be "divided" into two or more groups of approximately equal
sizes, where in the final state different groups must occupy distant portions of
the plane.

A centralized solution for these problems may consist of the following steps: (1) Count
the total number of robots, (2) obtain the current position of each robot, (3) determine
a final position for each robot, (4) generate a schedule for moving the robots from
their current positions to their respective final positions, (5) broadcast the schedule
to the robots, and (6) let the robots start executing the schedule simultaneously.
Another centralized solution would be to let the robots communicate regularly and
maintain the same information at all times, so that each robot can generate a plan for
the entire set of robots by using the same information and then execute the portion
of the plan applicable to itself [15]. It is conceivable, however, that such solutions
may not always be desirable for the following reasons.

1. If the number of robots is large, the communication overhead required for col-
lecting all relevant information may be prohibitively large. Also, it may be LI
computationally infeasible to generate a schedule for the entire set of robots in 0
real time.

2. A new schedule for the entire set of robots may have to be generated every time
a robot becomes faulty.
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Furthermore, the centralized solution can be considered to be rather "unnatural,"
since an exact final position of every robot must be determined before a schedule is
generated, whereas none of the problems stated above requires that any specific robot
be moved to any specific position.

The purpose of this paper is to present simple, fully distributed algorithms for the
three problems stated above, assuming that each robot has a sensor for determining
the positions of other robots. The basic idea is to let each robot execute a simple
algorithm and generate its own schedule adaptively based upon the given goal and
the positions of certain other robots. No explicit communication among the robots is
necessary, and usually most of the robots execute the same algorithm. The algorithms
are designed to work satisfactorily even if (1) the total number of robots is unknown
and (2) a small number of robots become faulty during the operation, provided that
nonfaulty robots can determine which robots are faulty. (The second condition is not
always true for real robots.) Therefore, our solutions do not have the drawbacks of
centralized solutions mentioned in the previous paragraph.

The idea of distributively controlling robots outlined above has interested a num-
ber of researchers in the last several years. The cellular robotic systems of Wang
and Ben; [42] consists of a large number of robots that operate in a cellular space
under distributed control. They consider the problem of generating certain 1- and
2-dimensional cellular patterns using distributed control, and discuss interesting ap-
plications of the technique to the design of sensor arrays and escape systems. An-
other example is the dynamically reconfigurable robotic system of Fukuda and Nak-
agawa [131. This system consists of many simple cells that can detach and combine
autonomously to change its overall shape depending on the task and environment.
Fujimura [12] investigates how the planning algorithms, knowledge about the envi-
ronment and action intervals of robots affect the overall performance of the group of
robots, and reports interesting simulation results for the case of two robots moving
toward their respective goal positions avoiding collision. Mataric studies how local
interactions of artificial agents can be designed to produce emergent group behaviors
1231, and how different levels of intelligence of individual robots affect the group dy-
namics. Parker [34] discusses an architecture for adaptive action selection in a team
of cooperative agents, and applies it to the example of a group of janitorial service
robots. The results reported in this paper are based on the work done independently
by the authors in 1988 and subsequently published in a preliminary form in 1990 [37].
To our knowledge, the particular problems addressed here have not been investigated
before.

As is commonly done in many of the papers mentioned in the preceding paragraph,
in this paper we use simulation for evaluating the performance of the proposed algo-
rithms, representing each robot as a disc and employing a simple collision avoidance
strategy. Also, we simulate sensor and control errors, and briefly discuss its effects
on the performance of the algorithms. The problems considered here require only
approximate solutions, and in this regard, the simulation results we obtained seem
to indicate that the algorithms perform as expected (though at least theoretically,
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some of the algorithms can fail if the initial distribution of the robots has certain
symmetry -egularity and there are no sensor and control errors). Formal analysis
of the per nce of the proposed algorithms, in terms of the initial distribution of
the robot' it-ed of convergence and the quality of the resulting distribution, is left
for future research.

The rest of this paper is organized as follows. We state the basic assumptions
in Section 2, and then describe the collision avoidance strategy in Section 3. The
problem of forming an approximation of a circle is discussed in Section 4. Section 5
illustrates a method for forming an n-sided simple polygon, where n is much smaller
than the total number of robots. The problem of distributing robots nearly uniformly
within a circle or a convex polygon is discussed in Section 6. A method for forming
a line segment is also presented. In Section 7 we present a simple solution for the
problem of dividing roboi .• +wo or more groups. Concluding remarks are found
in Section 8.

2 Assumptions

For the purpose of simulation, we represent a robot as a disc that is 40 centimeters
in diameter 1 and assume the following.

1. A robot can monitor the positions of other robots arxd move in any desired
direction at any speed not exceeding the given maximur. of 5 centimeters per
second.

2. Initially, the robots can be distributed in a circular region of up to 20 meters
in diameter.

3. The robots do not have a common x-y coordinate system. (This implies, for
example, that we cannot program a robot to "move to position (0, 0)" or "move
north," expecting that they will all move toward a single point or in the same
direction, respectively.)

4. For any robot, all other robots "look" identical. (This implies, for example,
that we cannot program a robot to "find a red robot and move toward it.")

We note that the fourth assumption does not imply that a human operator cannot
distinguish different robots. For example, occasionally we may need a small number
of selected robots to behave differently from the rest of the robots. In such cases,
the human operator may wish to control these robots manually while the rest of the
robots are executing the given algorithm. It would of course be highly desirable if no
human intervention is needed to solve the given problem, but apparently that is not
always the case. (For example, leader election and symmetry breaking are not always

1The MIT AI Lab mobile robot [21 is cylindrical and is about 17 inches in diameter. The robot
used in [24) is 30 centimeters in diameter. The robot used in [25] is not cylindrical, but is 12 inches
long.
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possible, under certain assumptions [38].) So in this paper we discuss both types of
algorithms, those that do not requ;re any human intervention before termination, and
those that use such intervention during execution as useful guidelines.

Unless otherwise stated, the following are assumed regarding sensor and control
errors in the simulation presented below.

1. The direction of and disance to another robot that a robot measures can be
inaccurate by up to 5V and 5%, respectively.

2. If a robot wants to move in a certain direction at a certain speed, then its actual
direction of move and speed can be inaccurate by up to 50 and 5%, respectively.

(Actually, we found that in many cases, the behavior of the algorithms we present
does not change significantly even if the inaccuracies are assumed to be up to 100
and 10%, respectively.) The distribution of errors is assumed to be uniform. The
simulation results we present in the subsequent sections are some of the typical ones
we obtained out of a large number of runs for different numbers of robots (from 20
to 50) and their initial distributions.2

3 Collision Avoidance

We have developed a simple collision avoidance strategy for the robots, and used it in
the simulation of all the robot algorithms we present. The strategy is that if a robot
detects another robot within distance 20 centimeters (measured between the surfaces
of the robots) in the direction of its move, then it swerves to left, minimally, provided
that it successfully finds a direction that is clear of any such robot. If no such left
swerve (including a backward move in an extreme case) is found to be possible, then
the robot decides not to move until either its path becomes clear or a suitable left
swerve becomes possible. One trick we use is that when a robot swerves, it slows down
to one half the normal speed. We found this technique to be very effective in avoiding
a robot from being "pushed" too far by a robot moving to the left immediately in
front of it. (The method used in [25] involves stopping a robot for some fixed period,
when it detects another robot in its way.)

Figure 1 shows how nine robots, each moving in the given fixed direction (subject
to sensor and control errors), avoid collision using the strategy described above. Here,
and in the rest of this paper, the hollow circles represent the positions of the robots
every 5 seconds, and the black dots represent their final positions. The size of the
circles and dots is in scale with the distances among the robots.

We found this strategy for collision avoidance to be effective for our purposes,
and the robot algorithms we developed performed well in simulation when used with

2Reference [25] deals with 5 to 20 robots. Reference [36] discusses the behavior of 100 "agents"
and mentions that there are other situations in which a much larger number of agents are needed to
demonstrate phenomena of interest. The number of robots (20 to 50) we consider seems reasonable,
i.e., large enough for the robots to consistently exhibit the behavior we expected, and small enough
for us to actually build that many robots.

5



Figure 1: Example of collision avoidance.
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R d> D R'
C a s e I ...............................................1................................. ........... 0

R d<D-6 ff
C ase 2 S...................................................

R D-6 < d < D R1
Case 3 ..............................

Figure 2: Algorithm CIRCLE.

it. Of course, as is the case with any "local" strategy for collision avoidance, there
can be a situation in which a robot fails to find its path successfully. For example, a
robot that enters an "U-shaped" region surrounded by stationary robots while moving
towards its destination will never exit from that region. (Such a situation does not
occur in our problem setting.) As is observed in [25], due to sensor errors and other
uncertainties in real robot behavior, we believe that it is unlikely that this strategy
causes other undesirable problems, such as deadlocks and infinite oscillations.

4 Forming an Approximation of a Circle

In the following we denote by N the total number of robots. As we stated before, the
simulation has been done for various values of N in the range of 20 to 50.

4.1 Algorithm CIRCLE

The objective is to move the robots so that they will form an approximation of a
circle having a given diameter D. Consider the following algorithm CIRCLE that
will be executed by each robot R, where 6 > 0 is a small constant.

Algorithm CIRCLE

Robot R continuously monitors the positions of a farthest robot M' and a nearest
robot R", breaking ties arbitrarily, and moves as follows in real time, where d is the
distance between R and R' (Figure 2):

Case 1 If d > D, then R moves toward R'.

Case 2 If d < D - 6, then R moves away from R'.

Case 3 If D - 6 < d < D, then R moves away from R".
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Figure 3: Reuleaux's triangle.

Case 3 of CIRCLE has the effect of distributing the robots more uniformly. Cases 1
and 2 will ensure that the distance between any robot and a robot farthest from it will
be approximately D, so that the width of the resulting distribution of the robots will
be D in any direction. This should certainly be true if N is large and the N robots
are distributed nearly uniformly on the circumference of a circle having diameter D,
but clearly this condition alone is not strong enough to ensure that the resulting
distribution will be a circle. In fact, a convex figure whose width is a constant D in
any direction is called an oval of constant width D [201, and a circle having diameter
D is only an example of such a figure. Figure 3 shows another oval of constant width
D, called Reuleaux's triangle, obtained by drawing arcs ab, bc and ca, with radii equal
to D, from the vertices c, a and b, respectively, of an equilateral triangle abc with
sides equal to D.

4.2 Simulation

Figure 4 shows a simulation result for 30 robots (N = 30) executing CIRCLE for 200
seconds. The values of D and 6 are 10 meters and 10 centimeters, respectively. As
we already stated, the maximum speed of a robot is 5 centimeters per second. The
initial positions of the robots are generated randomly within a circle that is 20 meters
in diameter. We have approximated the actual execution of CIRCLE by having each
robot adjust its direction of move every 0.5 seconds. Figure 5 shows another result
for 30 robots starting from a different initial distribution. In this result, we note
that that the distribution of the robots has become somewhat similar to Reuleaux's
triangle shown in Figure 3. Through additional simulation, we have observed that if
the number of robots N is sufficiently large (say at least 20) and initially the robots
are distributed randomly, then the resulting distribution of the robots is quite likely
to be a fairly good approximation of either a circle or Reuleaux's triangle. (Some
techniques for avoiding the formation of Reuleaux's triangle are discussed in [40].)

At least theoretically, the initial distribution of the robots is important. For
example, if there are no sensor and control errors and the robots are arranged perfectly
on a line, then the robots executing CIRCLE will always stay on the same line. Of
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Figure 4: Execution of CIRCLE for 200 seconds.
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Figure 5: Execution of CIRCLE for 200 seconds, starting from another initial distri-
bution.
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course, an occurrence of such a situation is very unlikely for real robots. Moreover,
we can easily destroy, with a high probability, any symmetry or regularity in the
initial distribution by moving the robots randomly for a short period of time. Similar
remarks apply to some of the algorithms presented in the rest of the paper.

4.3 Termination of the algorithm

The algorithm does not have any built-in mechanism for terminating its execution.
Our position is that, when the human commander observes that a sufficiently good
approximation of a circle has been generated, '.e can do either one of the following:

1. Stop all robots by broadcasting a signal.

2. Stop any one robot and let other robots continue to execute CIRCLE.

It can be verified by simulation that the second method of stopping only one robot
will not destroy the distribution of the robots. Furthermore, if we control a single
robot manually and move away from other robots, then the rest of the robots, still
executing CIRCLE, will move (more or less) in the same direction maintaining the
distribution. Although a fully automatic operation of the robots is highly desirable,
some human intervention might still be necessary for many cases. So we do not
necessarily consider this manual operation as an unacceptable drawback. Also, we
believe that it should be quite feasible to control a small number of robot manually.

5 Forming a Simple Polygon

In this section we present a method for forming a simple n-sided polygon, where n > 3
is much smaller than the total number of robots N.

First, we let the robots execute algorithm CIRCLE until the resulting distribution
approximates a circle sufficiently well so that each robot R can recognize its immediate
"left" and "right" neighbors, denoted l(R) and r(R), respectively. The neighbors l(R)
and r(R) are determined only once, and one way to select them is the following. Each
robot R regards the nearest robot as /(R), and r(R) is the nearest robot in the half
plane not containing _(R) determined by the line passing through R perpendicular
to the segment R I(R) (Figure 6). (The robots need not have a global sense of
orientation, that is, "left" need not mean the same to all the robots.)

When I(R) and r(R) are determined for each robot R, we select n robots that will
be the vertices of the n-sided polygon to be generated. Then we do the following,
possibly concurrently.

1. Move the n. *ots manually to their desired final positions, in such a way that
the order in which the n robots appear in the polygon will be the same as in
the current approximation of a circle.

2. Let all other robots R execute the following algorithm CONTRACTION.
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Figure 6: Choice of 1(R) and r(R).

1(R) .

R ..... ". : .

r(R)s

Figure 7: Algorithm CONTRACTION.

Algorithm CONTRACTION

Robot R continuously monitors the positions of l(R) and r(R), and moves toward
the midpoint of the segment l(R) r(R), in real time (Figure 7).

Intuitively, algorithm CONTRACTION has the effect of transforming any curve
formed by a sequence of robots between two robots that are not executing CON-
TRACTION into a line segment in which the robots are distributed nearly uniformly.
Note that a robot executing CONTRACTION need not "know" which robots are not
executing CONTRACTION.

Figure 8 shows the positions of 30 robots obtained by applying this method for
100 seconds, starting from a distribution reached by executing algorithm CIRCLE.
The four robots that are at the vertices of the resulting polygon were moved manually.
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Figure 8: Formation of a polygon by CONTRACTION.
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6 Distributing Robots within a Simple Geomet-
ric Object

6.1 Distribution within a circle

Robots can be distributed nearly uniformly within (an approximation of) a circle
having diameter D if each robot R executes the following algorithm FILLCIRCLE.

Algorithm FILLCIRCLE

Robot R continuously monitors the positions of a farthest robot RV and a nearest
robot R", breaking ties arbitrarily, and moves as follows in real time, where d is the
distance between R and R':

Case 1 If d > D, then R moves toward R.

Case 2 If d < D, then R moves away from R".

Case 1 of FILLCIRCLE ensures that the distance between any two robots will be
at most D. Case 2 has the effect of distributing the robots more uniformly. Note that
R' and R" for R are not fixed and may change in real time as the positions of robots
change.

Figure 9 shows the positions of 30 robots executing algorithm FILLCIRCLE for
100 seconds starting from their initial positions generated randomly. We observe that
the robots are distributed fairly uniformly within a circular region. (We found that
the region tends to be an approximation of either a circle or Reuleaux's triangle.) As
is the case with algorithm CIRCLE, we can move the robots in any direction without
destroying the distribution by moving any one robot manually.

6.2 Distribution within a convex polygon

Distributing robots nearly uniformly within a convex polygon requires a different
technique. First, we select n robots that will be the vertices of the n-sided convex
polygon, where n > 3 is much smaller than N. Then we do the following, possibly
concurrently.

1. Move the n robots manually to their desired final positions.

2. Let all other robots R execute the following algorithm FILLPOLYGON.

Algorithm FILLPOLYGON

Robot R continuously monitors the positions of other robots and moves as follows in
real time (Figure 10).

Case 1 If, as seen from R, all other robots lie in a wedge whose apex angle is less
than or equal to ir, then R moves into the wedge along the bisector of the apex.
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Figure 9: Execution of FILLCIRCLE for 100 seconds.
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Figure 10: Algorithm FILLPOLYGON.
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Figure 11: Distributing robots within a convex polygon by FILLPOLYGON.

Case 2 Otherwise, R moves away from a nearest robot, breaking ties arbitrarily.

Case 1 has the effect of moving a robot into the convex polygon determined by the
selected n robots. Case 2 is expected to distribute the robots more uniformly within
the polygon. As is the case with CONTRACTION, a robot executing FILLPOLY-
CON need not "know" which robots are not executing FILLPOLYGON.

Figure 11 shows the positions of 30 robots obtained by applying this method for
150 seconds starting from the initial distribution shown in Figure 4. The four robots
that are at the vertices of the resulting convex polygon were moved manually. We
observe that the robots are distributed fairly uniformly within the polygon, except
that there is a somewhat convex region near the upper corner containing no robots.
Apparently, none of the robots surrounding the region can enter the region, by Case 2
of Figure 10. In general, if the number of robots is very large, it is possible to
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have many such "bubbles" inside the polygon (and also in the circular region of
Subsection 6.1). We might be able to reduce the possibility of having such bubbles
by allowing the robots to move more randomly within the polygon.

As before, by controlling a small number of robots manually, we can (1) move
the robots in any direction without destroying the distribution and (2) transform the
polygon into another convex polygon.

6.3 Formation of a line segment

This is similar to the problem of distributing robots within a convex polygon discussed
in the previ-,us subsection. We select two robots that will be the endpoints of the
line segment and do the following, possibly concurrently.

1. Move the two robots manually to their desired final positions.

2. Let all other robots execute algorithm FILLPOLYGON.

Figure 12 shows the positions of 20 robots obtained by applying this method for
200 seconds starting from their initial positions generated randomly. The two robots
that are at the endpoints of the resulting segment were moved manually. We see that
the final distribution of the robots is a slight zig-zag formation, that might still be
considered a sufficiently reasonable approximation of a line segment.

For this simulation only, we assumed that the sensor inaccuracies regarding di-
rection are up to 10, rather than 5V. (The control inaccuracies regarding direction
and inaccuracies regarding distance are still up to 5V and 5%, respectively.) Through
additional simulation, we found that the algorithm is sensitive to directional sensor
errors: In the presence of even up to 20 of such errors, the robots tend to form two
chains, each connecting the given two endpoints, rather than a single line segment.
The reason for this sensitivity is the following. When the convex hull of the robot
positions becomes sufficiently "thin," then for a robot R for which the apex angle .of
the wedge in Case 1 of FILLPOLYGON (Figure 10) is less than or equal to 7r, the
angle can erroneously be evaluated to be greater than 7r. Then the robot executes
Case 2 instead of Case 1, and fails to make the convex hull even thinner.

The final distribution shown in Figure 12 can be converted to a more uniform
distribution, by letting each robot R (except the two stationary ones) determine the
neighbors l(R) and r(R) and execute algorithm CONTRACTION (as in Figure 7)
starting from that distribution. Furthermore, the location and the length of the
segment can be changed by moving the two robots at the endpoints of the segment
manually while the rest of the robots are executing CONTRACTION. Figure 13 shows
an example of this operation.

7 Dividing Robots into Groups

We present a method for dividing N robots into m groups of approximately equal
sizes, where m is much smaller than N.
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Figure 12: Formation of a line segment by FILLPOLYGON.
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Figure 13: Changing the location and the length of a segment by CONTRACTION.
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First, let the robots execute algorithm CIRCLE until 1(R) and r(R) can be de-
termined for each robot R, as in the case of forming a simple polygon discussed in
Section 5. Next, select in robots that will be the "leaders" of the m groups. To make
the sizes of the groups approximately the same, the in robots must be chosen so that
they are nearly evenly distributed. Finally, we do the following, possibly concurrently.

1. Control the m robots manually and move them away from each other.

2. Let all other robots R execute algorithm FOLLOW given below.

Algorithm FOLLOW

Robot R stays in the current position until one of 1(R) and r(R) moves, and then
"follows" the one, call it R', that has started to move first (breaking a tie arbitrarily) as
follows: R memorizes the initial distance d between R and R', continuously monitors
the position of R', and moves, in real time, toward R' if the distance between R and
R' becomes "sufficiently" greater than d (say, 10% greater than d including a safety
margin, if there can be up to 5% sensor errors regarding distance).

Figure 14 shows the positions of 30 robots obtained by applying this method with
m = 3 for 100 seconds, starting from a distribution obtained by CIRCLE. It is easy
to see that the three groups can be moved to any distant locations by moving the
three leaders manually.

8 Concluding Remarks

We have presented simple, fully distributed algorithms for certain problems of coordi-
nating the motion of many mobile robots in the plane. The results of simulation seem
to indicate that the algorithms we have obtained can be an attractive alternative to
the conventional centralized control methods. t

The following problems are suggested for future research: (1) To give formal
analysis of the performance of the algorithms, and (2) to find complex tasks that can
be performed efficiently by multiple mobile robots that are controlled distributively.
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